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ABSTRACT
A distributed memory message-passing parallel implemen-
tation of a finite-volume discretization of the primitive
equations in the Community Atmosphere Model is pre-
sented. Due to the data dependencies resulting from the po-
lar singularity of the latitude-longitude coordinate system,
it is necessary to employ two separate domain decomposi-
tions within the dynamical core. Data must be periodically
redistributed between these two decompositions. In addi-
tion, the domains contain halo regions that cover the near-
est neighbor data dependencies. A combination of several
techniques, such as one-sided communication and multi-
threading, are presented to optimize data movements. The
resulting algorithm is shown to scale to very large machine
configurations, even for relatively coarse resolutions.

KEY WORDS numerical weather prediction, parallel pro-
gramming, MPI-2

1 Introduction

Atmospheric general circulation models (AGCMs) are key
tools for weather prediction and climate research. They
also require large computing resources: even the largest
current supercomputers cannot keep pace with the desired
increases in the resolution of these models. AGCMs con-
sist, roughly speaking, of the “dynamics”, which calculates
the atmospheric flow, and the “physics”, in which parame-
terizations for subgrid phenomena such as long- and short-
wave radiation, moist processes, and gravity wave drag, are
approximated. The physical parameterizations will not be
discussed further here. We concentrate on the finite-volume
solver of the dynamics (thedynamical core) in the Com-
munity Atmosphere Model (CAM). The finite-volume dy-
namical core, orFVdycorefor short, requires a substantial
fraction of the overall computational time.

The efficient parallelization of FVdycore is not triv-
ial, in part due to the latitude-longitude nature of the un-
derlying grid. The convergence of meridians at the poles
brings not only well known numerical challenges, but cre-
ates software challenges as well. For the method presented
here to be scalable, it is necessary to redistribute the data on
a regular basis. In this paper, a variety of techniques using
advanced features of the current Message-Passing Interface
standard MPI-2 [1], and the OpenMP standard [2] for mul-

tithreading, are presented to handle the redistribution effi-
ciently. Many of these techniques are new in the field of
atmospheric modeling, and we believe an extensive analy-
sis is key to attaining the highest possible performance of
CAM in a production environment.

The message-passing parallelization with both 1-D
and 2-D decompositions is treated in Sec. 2, with a discus-
sion of the underlying communications primitives in Sec.
3. In Sec. 4 the optimizations for improved performance
on large parallel computers are presented. Results are pre-
sented in Sec. 5, where it is seen that the approach scales
well to large machine configurations. Additional conclu-
sions and future directions are presented in Sec. 6.

2 Parallelization

TheFV dynamical coresolves the 3-Dprimitive equations
[3]. FVdycore contains a component (referred to hereafter
ascd core ) which separates the 3-D equations inton 2-
D equations by using a Lagrangian (floating) vertical co-
ordinate, and a remapping component (hereafterte map)
which consists of the vertical remapping [4] from the La-
grangian frame back to the original vertical coordinate. Fi-
nally, in geopk , it also solves the hydrostatic equation at
each step, which is inherently a vertical integration. All of
these components were first parallelized with the OpenMP
shared memory multitasking paradigm, and obtained re-
spectable performance on up to 16-32 CPUs on an SGI
Origin 2000 [5].

The FV dynamical core, however, contains consider-
ably more inherent parallelism. In the Lagrangian frame it
is clear that thecd core calculation at each level is in-
dependent of all others. There is no reason, beyond con-
venience, to parallelize the vertical calculation with shared
memory parallelism alone. If there are enough levels, these
can be separated into contiguous sets, much like packages
of sliced cheese. Within each package it is still possible
to employ OpenMP parallelism on the small number of lo-
cal levels. This approach is employed on clusters of shared
memory nodes, such as the IBM Nighthawk nodes which
were used for the subsequent performance tests.

The stencil of points needed for one finite-volume it-
eration is determined by the spatial accuracy order of the
algorithm,∆t, and the geographical separation of the grid
points, as dictated by the dimensionless Courant numbers:



Figure 1. The 1-D algorithm decomposes the latitude-
longitude-level domain into a set of latitude slabs. Each
slab, or decomposition element(DE), has a north and
south halo region, which covers the latitudinal data depen-
dencies. These halo regions are filled (“halo exchange”)
beforecd core calculations in a communication phase
which can be overlapped with unrelated calculation. The
calculation on haloed arrays can then take place without
further communication.

Cλ =
u∆t

R∆λ cos θ
Cθ =

v∆t

R∆θ
(1)

In latitude the geographical separation∆θ is constant.
Therefore, if ∆t is chosen appropriately, and the wind
speeds,u and v, remain in an atmospherically realistic
range, only the accuracy order of the algorithm is signifi-
cant, and there are limited north-south neighbor dependen-
cies (1, 2, or 3 lines of latitude) on each level. A similar
statement for thecd core calculation inλ is not possible:
even if the longitude separation∆λ is constant, thecos θ
term goes to zero at the poles. In order to solve the “pole
problem” of converging meridians near the pole, a semi-
Lagrangian approach [6] is employed to determine the
fluxes inλ. Cλ can become large, and the semi-Lagrangian
method has dependencies on grid points which are at ge-
ographical distances dictated by the departure point for a
given ∆t. Near the poles, this set goes well beyond the
immediate east-west neighbors.

In the 1-D domain decomposition algorithm the do-
main is cut into latitude slabs, with each slab (or more ab-
stractlydecomposition element, subsequently referred to as
aDE) maintaining ahalo (or “ghost”) region on both north
and south as illustrated in Fig. 1. The horizontal calculation
can be performed in a distributed memory setting: the halo
regions are first exchanged with message-passing, and the
latitude-slab calculation is then performed independently
on all DEs. In the vertical, shared memory parallelism is
still utilized, resulting in a hybrid-parallel model. The 1-D
domain decomposition is applicable to bothcd core and
to te map.

The2-D algorithm employs a domain decomposition
for cd core which is decomposed by latitude and level.
Unfortunately this decomposition is no longer appropriate
for te mapand the vertical integration for the calculation
of the pressure term (known in atmospheric modeling as
pκ) in geopk ; here the dependencies are vertical instead
of horizontal. For these components the domain is best

decomposed in latitude and longitude. This requires the
constituent arrays to be redistributed ortransposedfrom a
latitude-levelto a latitude-longitudedecomposition before
the vertical calculation and back thereafter. We have ap-
plied this technique, putting much emphasis on a highly
optimized transpose operation.

3 Communication Primitives

At the lowest level, we have based the parallelization on the
PILGRIM [7] and themod comm[8] libraries. The former
is designed for general, unstructured domain decomposi-
tions while the latter is designed for the types of structured
communication, in particular halo exchanges, needed for
the 1-D and 2-D algorithms.Mod commtakes advantage of
one-sided communication from the Message-Passing Inter-
face MPI-2 standard [1], and combines this with OpenMP
multithreading of the communication, which is possible on
some architectures, e.g. SGI Origin.

Figure 2.MPI-2 communication schemes: Method A packs
data into a send buffer, uses multithreadedMPI Put for
communication, then unpacks from a receive buffer; B per-
forms multithreadedMPI Put from the source to a dedi-
cated target window, then unpacks into the final destina-
tion; C usesMPI Put with MPI derived datatypes to move
data to a dedicated window, with multi-threading over the
target process; D usesMPI Put directly into the destina-
tion buffer, multithreading over the target process. Method
D requires considerable overhead to make sure the window
points to the proper target buffer.

We have added facilities for the types of irregular
communication inherent to the transpose, namely exchange
of unequally sized data chunks between decomposition el-
ements (DEs). A type to describe a set of non-uniform
blocks defined in memory by their displacements and sizes,
is as follows:

TYPE BlockDescriptor
INTEGER :: method
INTEGER :: type
INTEGER, POINTER :: displacements(:)
INTEGER, POINTER :: blocksizes(:)
INTEGER :: partneroffset
INTEGER :: partnertype

END TYPE BlockDescriptor



A powerful feature is that the communication
method can be supplied at run-time, allowing flexibility
and inherently supporting different methods for separate
communications. Depending on which method is used,
thetype may contain an MPI derived datatype; otherwise
thedisplacements andblocksizes may be used di-
rectly. Thepartneroffset is a scalar which defines a
local offset needed by the MPI-2 implementation.

PILGRIM definescommunication patternsas two ar-
rays of length 1. . . # DEs: thesend descriptor, an array of
block descriptors of blocks which need to be sent, and the
receive descriptor, an array of descriptors of blocks which
will be received.

TYPE ParPatternType
INTEGER :: Comm
INTEGER :: Iam
INTEGER :: Size
TYPE(BlockDescriptor), POINTER :: SendDesc(:)
TYPE(BlockDescriptor), POINTER :: RecvDesc(:)

END TYPE ParPatternType

A given data arrayA may have two different decom-
positions,D1 andD2. The redistributionR is the commu-
nication pattern

R : AD1 −→ AD2 (2)

That is, redistributions are a function only of the data de-
compositions and can be calculated once for all time in the
initialization phase. Themod commlibrary was extended
with non-uniform send and receive primitives which take
the form:

Function mod comm Additions
Begin transfer mp send mp sendirr
Complete transfer mp recv mp recvirr

Themp sendirr takes both the send and receive descrip-
tor (both needed to support both 1-way and 2-way commu-
nication) as arguments whilemp recvirr requires only
the receive descriptor.

4 Optimizations

The MPI-1 standard [9] supports only two-sided com-
munication. The default MPI-1 implementation uses
MPI Isend andMPI Irecv primitives and utilizes both
a send buffer into which the data to be transfered are
packed, and a receive buffer, from which the data are un-
packed. A first optimization required the definition of MPI
derived datatypes to define the send and receive descriptors,
circumventing the user buffers.

The enhanced MPI-2 standard offers one-sided com-
munication through theMPI Put primitive. One-sided
communication requires the definition of MPI-2windows
defining the segments of memory that receive remote data.
These windows can utilize the MPI derived datatypes de-
scribed previously.

In addition, the possibility is available on some plat-
forms to multithread the one-sided communication. This

Figure 3. Partial sum geopk : The atmospheric levels
(here illustrated in the horizontal) are distributed over DEs.
When integrating vertically upward, each DE does a local
integration in parallel and passes its result to all DEs above
it. Bitwise reproducibility, if required, can be ensured by
performing local calculations in high precision arithmetic.

can be done in different ways. First, a large block to be
sent from a given DE to another is broken into a set of
smaller blocks; the delivery of this set withMPI Put is
multithreaded. The second possibility is to multithread the
delivery of all blocks from one DE withMPI Put over the
set of DE targets.

In addition, an extensive effort was made in MPI-2 to
reduce the amount of buffering needed. Fig. 2 explains four
methods for the MPI-2 implementation of an asynchronous
transfer. All methods were supported by IBM SP, but mul-
tithreading of messages on that platform does not enhance
performance. Only methods A and B (which do not involve
MPI derived datatypes) are currently supported on the SGI
Origin, which also supports multithreading of messages.

The geopotential calculationgeopk is a vertical in-
tegration within the dynamics calculation taking place at a
point where the 2-D domain is decomposed in the latitude
and the vertical dimension. The original approach was to
transpose the necessary arrays before and after this oper-
ation. As an additional optimization, a parallel algorithm
was developed which constructs and sends partial sums
“upward” as indicated in Fig. 3. This method does not re-
quire a transpose — only the communication of the partial
sum to all ’higher’ subdomains. The partial sum method
gives round-off differences in the results with different DE
configurations, due to the varying order of additions. But
a quadruple precision mode is available for debugging pur-
poses to ensure bit-wise reproducibility over all possible
parallel configurations.

5 Results

The FV dynamical core was tested at both0.5o × 0.625o

and 1o × 1.25o horizontal resolutions, containing 576 x
361 and 288 x 181 grid points, respectively. 26 vertical
levels were used for both resolutions. The target platforms
were the SGI Origin 3800Chapman(at NASA GSFC) with
1024 CPUs @ 600 MHz, and an IBM SPSeaborg(at DOE



MPI-1 MPI-2
DEs / Buffers Types Method A

Threads (s.) (s.) (s.)
9 / 1 626 545 641

/ 4 193 194 187
/ 9 105 111 98

18 / 1 316 312 300
/ 4 112 111 102
/ 9 77 79 62

36 / 1 159 162 165
4 82 84 66
9 64 67 42

45 / 1 153 142 171
4 75 74 62
9 63 68 40

Table 1.The FV dynamical core (1-D decomposition) tim-
ings are given for a one-day CAM simulation at1o ×
1.25o× 26L, run on configurations with 9, 18, 36, 45 DEs,
each running with 1, 4 or 9 OpenMP threads. The MPI-1
methods using send and receive intermediate buffers or de-
rived datatypes, are compared with MPI-2 Method A. The
results indicate overheads for using MPI-2 one-sided com-
munication with 1 thread, but better scalability for 4 and
9 threads than MPI-1. The OpenMP multithread perfor-
mance of individual computation-only components is not
affected by the communication paradigm. The increase in
MPI-2 performance is thus attributable to the multithread-
ing in the halo exchange communication.

NERSC) with 380 Nighthawk nodes, each with 16 CPUs
@ 375 MHz.

The 1-D decomposition was extensively evaluated
with various numbers of latitude slabs and OpenMP threads
per slab, using different communication primitives. Tab.
1 gives an overview of the timing results for the entire
FV dynamical core in CAM for MPI-1 with intermediate
buffers, MPI-1 with derived datatypes, and MPI-2 method
A. The benefits of MPI-2 multithreaded communication are
alluded to already in this comparison. Closer investigation
of the communication timings indicates excellent speedup
in the halo exchange. These results are in line with those
found in [8].

Fig. 4 compares the timing percentiles of various
components of the Community Atmosphere Model (CAM,
part of the Community Climate System Model [10]) in
which the FV dynamical core is embedded. The figure
indicates that the components scaling the worst and best
are part of the physical parameterizations, which are out-
side of the dynamical core. Some “physics” components
scale well because they are communication-free. The land-
surface model scales by far the worst and is a known bottle-
neck at very large processor count. All components of the
dynamical core scale reasonably to 2944 CPUs, including

Figure 4. The performance of the overall CAM
application on both a 32 and 2944 CPU configu-
ration (IBM “Seaborg”) is broken down by compo-
nent. The dynamical core componentscd core (with-
out geopk ), geopk , trac2d , and te map all scale
better than average. The land surface parameteriza-
tion atmlnd drv has the poorest scaling due to insuffi-
cient computational load; the other physical parameteriza-
tions bc physics and ac physics scale better than
average, in part thanks to their communication-free na-
ture. With the targeted optimizations, thetranspose
and dp coupling-transpose do not present a per-
formance bottleneck.

the transpose, which consists entirely of communication.
The worst performer is the geopotential calculation, while
the best is thecd core routine (withoutgeopk ).

Fig. 5 illustrates the overall scalability of the CAM
run, in simulated days per day of wallclock time. This
includes all components illustrated in Fig. 4. Even for



Figure 5. IBM SP with Nighthawk 16-way nodes: the
1o×1.25o×26L resolution illustrates the scalability of the
hybrid-parallel approach on a very large machine. Even
though the resolution of this simulation can be considered
low, the 2-D domain decomposition with 1 thread per DE
(leftmost curve) allows parallelism to be exploited up to
200 CPUs, with 4 threads per DE (center curve) up to 780
CPUs, and with 7 threads (longest curve) up to 1320 CPUs.

the relatively low resolution of1o × 1.25o × 26L the 2-D
hybrid-parallel implementation can exploit parallelism up
to a large extent of the machine.

The MPI-2 multithreading capabilities of the code can
also provide improved performance if these facilities are
supported by the target platform. Fig. 6 illustrates a non-
negligible performance increase for the overall FV dynam-
ical core. The performance gains for the transpose (Tab.
2) were more modest than those for the halo exchange,
but showed a marked improvement of method B over both
method A and the MPI-1 default. The fact that one-sided
communication is of less benefit to the transpose calcula-
tion is under investigation.

The partial sum optimization ofgeopk mentioned in
Sec. 4 also achieved a notable performance improvement.
As indicated in Tab. 3, the partial sum method (with round-
off error) performs consistently as good or better than the
transpose approach.

We have also implemented nested OpenMP con-
structs in the FV dycore. The motivation for this with the
2-D decomposition is that one of the decomposition direc-
tions (vertical) is the same as the primary OpenMP direc-
tion, and, with only 26 vertical levels, the degree of at-
tainable OpenMP parallelism is therefore limited. We find
that for certain high-resolution configurations and thread
counts, IBM performance of the vertically-independent
phase of the dynamical core can improve significantly.
Nested OpenMP is presently supported on HP/Compaq and
IBM platforms, although IBM’s present implementation is
non-standard and not well publicized.

Figure 6. SGI Origin 3800 results: the wall-clock time
for the overall FV dynamical core (1-day simulation at
0.5o × 0.625o × 26L resolution) is given as a function of
the number of subdomains (DEs) using a 1-D decomposi-
tion. For 4 and 9 threads per DE (upper and lower pair of
curves, respectively), the MPI-1 (upper curve in pair) and
MPI-2 (lower curve in pair) performances are given. MPI-
2, which can take advantage of the multithreading in the
communications primitives, can yield as much as a 20%
overall reduction in computation time for 4 threads, and a
33% reduction for 9 threads.

MPI-1 MPI-2
Nlat Types Method A Method B

9 113 117 99.5
18 68.8 69.5 60.8
36 46.4 47.4 42.4

Table 2.Timings in seconds are given for the overall trans-
pose times in a 1-day0.5o × 0.625o × 26L simulation on
the SGI Origin 3800 with 4 vertical subdomains and Nlat

bundles of latitudes (i.e., # DEs = 4 x Nlat). MPI-2 mul-
tithreading can lead to higher performance than the best
MPI-1 method: MPI-2 method A is comparable to MPI-1
(using derived datatypes). Method B consistently outper-
forms both. Methods C and D are not currently supported
in the SGI MPI-2 implementation.

6 Conclusions and Future Work

We have presented a scalable parallel implementation of a
FVdycorefinite-volume solver of the primitive equations.
This has been fully integrated into the Community Atmo-
sphere Model. The optimizations presented in this paper
utilize two different 2-D spatial decompositions of the do-
main as well as multithreading primitives on the subdo-
main local to a node of shared-memory processors. Several
techniques incorporating both MPI-2 and OpenMP primi-
tives for efficient redistributions between nodes have been
programmed and evaluated. These efforts now allow the



Threads pe DE
1 4 7

Transpose 59.7 51.2 36.6
Partial sum 60.0 30.1 30.3

Table 3. Timings in seconds for the geopotential calcula-
tion in geopk : the partial sum method is as good or better
than the transpose method, particularly if multiple threads
per DE are employed.

FVdycore to scale to large machine configurations, even
for simulations with relatively modest resolution.

Some additional optimizations to this implementation
are planned. We hope to port the code to the Cray X1, uti-
lizing both vector parallelism and the SHMEM library for
communication. Our primitives for irregular communica-
tion will thus be extended to use SHMEM as an option to
MPI-2.
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